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Abstract. The emergence of the cloud computing paradigm introduces a
number of challenges and opportunities to application and system developers.
The multiplication and proliferation of available offerings by cloud service
providers, for example, makes the selection of an appropriate solution com-
plex and inefficient. On the other hand, this availability of offerings creates
additional possibilities in the way that applications can be engineered or
re-engineered to take advantage of e.g. the elastic nature, or the pay per use
model of cloud computing. This work proposes a formal framework which
allows to explore the possibility space of optimally distributing application
components across cloud offerings in an efficient and flexible manner. The
proposed approach introduces a set of innovative in their use concepts and
demonstrates how this framework can be used in practice by means of a
running scenario.
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1 Introduction

The cloud computing paradigm offers a well documented set of benefits to enterprises
and individuals with respect to transferring capital to operational expenses, potentially
unlimited access to computational resources, and utility-based charging for the
use of these resources [4]. In this respect, cloud computing offers a platform for
innovative information systems that are partially or completely implemented using
cloud offerings. In order however to reap the full benefits of cloud computing,
application design and development must move beyond the mere re-packaging of
applications in virtual machines (VMs) and offering them as part of Infrastructure as
a Service (IaaS) solutions [1]. For example, novel services like Database as a Service
(DBaaS) offerings can be used in designing and realizing new applications, or while
migrating and accordingly adapting existing applications for the cloud. Furthermore,
when considering the variation of pricing models across cloud providers [22], it
becomes possible to select from different cloud offerings, e.g. different configurations
of the AWS EC2 service1, in order to identify an optimal in terms of operational
expenses distribution of the application.

1 Amazon Web Services (AWS) EC2: http://aws.amazon.com/ec2/.



Toward this goal, a number of approaches provide decision support for migrat-
ing existing applications to the cloud, see for example [2, 10, 16]. However, these
approaches do not consider as part of their process the application topology, i.e. the
combination of application-specific components, middleware solutions like the applica-
tion server used, and the underlying infrastructure (VMs on either a local server, or on
cloud offerings) hosting both of them and allowing the application to operate. Using
the taxonomy proposed in [1], such approaches usually provide support for migration
type III, meaning that the whole application stack (components, middleware and OS)
is bundled in a VM image and moved to a cloud provider for hosting. In this respect,
these approaches are limited in their capabilities when considering the distribution
of the application across cloud offerings and/or local, in-house servers.

On the other hand, initiatives like the TOSCA standard [6], Cloud Blueprints [20]
or CloudML [7] allow for a portable and interoperable topological description of the
application stack that can be used for the distributed deployment of the application
across cloud providers. Using these initiatives, it becomes possible for the application
developer to explore the application design space and model which cloud offering to
use to host which parts of the application stack. However, what these approaches
lack is decision support capabilities towards optimally selecting the best of the
identified application topologies in a given situation. This is a deficiency that this
work aims to address by bringing together cloud migration decision support with
these cloud-aware topology description approaches. The proposed approach does not
make any assumptions with respect to the technologies used and as such it is suitable
for use in both generic and domain-specific information systems.

The main contribution of this work can therefore be summarized as a technology-
agnostic formal framework that provides the means to:

– Model, verify and automatically generate alternative scenarios for the distribution
of an application stack across cloud offerings. Applications in this context may
entail a complete information system, or only part of it.

– Evaluate each one of these distribution scenarios with respect to various dimen-
sions using different criteria, and allow the selection of an optimal scenario given
the application needs.

The remaining of this paper is structured as follows: the following section (Sec-
tion 2) discusses a motivating scenario that illustrates the challenges that this work
is addressing. Section 3 builds on existing models and languages to provide a formal-
ization of the notion of application topology and affiliated concepts. Section 4 uses
this formalization to develop a method for the optimal selection between alternative
(acceptable) application topologies, which is demonstrated in practice in Section 5.
Related approaches are discussed in Section 6, and the paper concludes in Section 7
by providing also the outline for future work.

2 Motivating Scenario

For purposes of further motivating this work we adapt the Web Shop application
topology discussed in [6]. We abstract away from the TOSCA notation used in [6] and
represent the topology of the application as the nodes and edges with solid lines in
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Fig. 1. The Web Shop Application Topology (adapted from [6])

the graph of Fig. 1. The application itself consists of three tiers: front end, back end
and persistence as a database. The WebShop Frontend component is developed as a
set of PHP files deployed in a PHP container. The container is in turn configured and
deployed as an Apache Web server module, with the server running inside a Windows
2003 Server OS installed on top of an IBM zSeries server. The WebShop Backend
component is a Web application packaged in a WAR (Web application ARchive) file
running inside an Apache Tomcat servlet container (requiring also the installation of
the Oracle Java Virtual Machine (JVM) in the same OS), while the MySQL RDBMS
is used as a database server for the ProductDB database. The latter two tiers are
deployed in a Windows 7 image provided by the Amazon Web Services (AWS) EC2
service as part of their Reserved Instances offerings2.

The application topology in Fig. 1 is already deployed in a distributed manner, in
the sense that the components from the different tiers are deployed and operated in
different infrastructure solutions, with the front end in a physical server on premises,
and the back end and persistence in an IaaS offering. However, the application
topology shown in Fig. 1 is only one of the possibilities for distributing the application.
As also shown in Fig. 1, and marked with dashed lines in the figure, it is also possible
to separate the back end from the persistence tier and deploy them in different EC2

2 AWS EC2 Instance Types: http://aws.amazon.com/ec2/instance-types/.



offerings (denoted by the ‘alt hosted on’ relationship), one or both of which could
be an Ubuntu Linux OS image. Furthermore, the ProductDB database could also
be migrated to the Amazon RDS3 DBaaS solution, which is compatible with the
MySQL RDBMS.

Each one of these topologies has a different impact on essential characteristics of
the application such as operational expenses, deployment time, scalability opportuni-
ties, performance, etc. Different pricing models are used, for example, for IaaS and
DBaaS offerings, taking into account different parameters, e.g. number of CPUs per
VM in the former case and size of egress traffic per month in the latter. Furthermore,
migrating the ProductDB to AWS RDS can be better suited for profiting from some
characteristics offered out of the box by DBaaS offerings, e.g. multi-instance manage-
ment, high availability, automated scaling, etc., as re-engineering the application to
deal with data consistency issues across database replicas is not required.

There are therefore two major challenges that this work is addressing: first, how
to infer the existence of possible topologies for a given application, and second, how to
optimally select amongst these alternative topologies for a given set of characteristics
like operational costs. In the following section we introduce a formal framework that
provides us with the fundamentals necessary towards dealing with these challenges.

3 Application Topology Fundamentals

So far we have been using the term ‘application topology’ in a rather informal manner
to denote the model for the deployment of the application components in middleware
solutions (e.g. the Apache Tomcat container in Fig. 1), and the consequent deployment
of the resulting software stack in an appropriate infrastructure solution (e.g. the
zSeries server, or the EC2 VM offering). Before proceeding further we first formalize
this notion:

Definition 1 (Application Topology). An application topology is a labeled graph
G = (NL, EL, s, t) where N is a set of nodes, E is a set of edges, L a set of labels,
and s, t the source and target functions s, t : EL → NL. The topology graph is
called typed, if the label set L contains only elements <name:type> (for nodes) and
<type> (for edges), in which case the graph is denoted by T .

Most existing works for cloud-oriented topology description like the TOSCA specifi-
cation [6], the Cloud Blueprinting approach [20], and the CloudML language [7], or
involving such a description as in, e.g. the MOCCA [13] framework, use this typed
topology graph model, in order to provide a concrete description of the application
and middleware components and cloud offerings involved under a unified model.
Similar approaches are also used by cloud service providers like Amazon with Cloud-
Formation4, as well as the OpenNebula initiative5 or OpenStack Heat6, with a clear
orientation towards facilitating and/or automating the deployment, provisioning

3 AWS Relational Database Service: http://aws.amazon.com/rds/
4 AWS CloudFormation: http://aws.amazon.com/cloudformation/
5 OpenNebula.org: http://opennebula.org/
6 OpenStack Heat: https://wiki.openstack.org/wiki/Heat



and management of applications on cloud solutions. For this purpose they need a
complete and a priori defined description of the application topology that can be
distributed across multiple cloud offerings.

However, as discussed in the previous section, this is a limited view of the
possibilities available in distributing the application across cloud solutions. Looking
at the case of the Web Shop application, it can be observed that there is a conceptual
distinction between the application components on one hand (denoted with double
lines in Fig. 1), and the middleware components like the Apache Web server and
the cloud offerings like the AWS EC2 service on the other. More specifically, while
the former part is unique and specific for the Web Shop application, the latter can
actually be reused and even shared across multiple applications similar to the Web
Shop. In this respect, the typed topology model used by approaches like TOSCA
should therefore only be interpreted as one possible instantiation of the application
topology. In order to be able to model and explore this possibility space, the notion
of a type graph with inheritance as formally defined in [5] and [12] can be used:

Definition 2 (Type Graph with Inheritance, following [5]). A type graph
with inheritance TGI is a triple (TG, I,A) consisting of a type graph TG = (N,E, s, t)
(with a set of nodes N , a set of edges E and a target function s, t : E → N), an
inheritance graph I sharing the same set of nodes N , and a set NA ⊆ N , called
abstract nodes. For each node n ∈ I the inheritance clan relation is defined by

clan(n)I = {n′ ∈ N | ∃path n′
∗−→ n ∈ I} where n ∈ clan(n)I (i.e. the path of

length 0 is included).

TGI is therefore a graph where the nodes and edges are types, and where edges
denoting the inheritance/subtype relation type, as in UML class diagrams, is allowed
between nodes. Bardohl et al. use the concept of abstract nodes in [5] for types that
have only inheritance relations with other nodes, meant to denote generic classes
of nodes like e.g. Web Server. Using the clan morphism relation clan(n)I allows
for navigating the inheritance-type edges in TGI graphs, which is instrumental in
producing typed graphs. In this respect, thinking of the application topological
description as a graph morphism over TGI produces potentially multiple typed
topology graphs depending on the availability of sibling nodes in inheritance relations
with abstract nodes (e.g. ‘Apache HTTP Server’ and ‘IBM WebSphere’ for the ‘Web
Server’ node). The concept of viable topology builds on this capability:

Definition 3 (Viable Topology). A typed topology T is viable w.r.t. a type graph
with inheritance TGI , iff all elements of T are labeled (typed) over the elements of
TGI , i.e. there exists a graph morphism m : TGI → T which uses the inheritance
clan relation.

Based on this definition, the topology of the Web Shop application of Fig. 1 can
therefore be classified as viable under the TGI graph of Fig. 2. In addition to
including the same types as the typed topology of Fig. 1 connected through edge
types inheritance, ‘consists of’ and ‘hosted on’, the TGI also incorporates types like
‘Linux OS’ as a subtype of the ‘OS’ node that were not included in Fig. 1 (marked
with dashed lines in Fig. 2). There are two ways to look at the morphism m that
translates TGI to T : top-down, with T being generated or validated against TGI ,
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Fig. 2. The (Extended) µ-topology of the Web Shop Application

and bottom-up, with TGI being abstracted from one particular typed topology T
and potentially being reused across different viable topologies. In order to facilitate
the discussion, the following terms are being introduced:

Definition 4 (µ, α and γ-topology). The type graph with inheritance TGI for a
viable application topology T is called its µ-topology. We denote by α-topology the
application-specific sub-graph of a µ-topology, and by γ-topology the non application-
specific (and therefore reusable) sub-graph of a µ-topology.

In the µ-topology of Fig. 2, for example, the upper nodes (above the dotted line)
belong to the α-topology of the Web Shop application, while the lower nodes (below
the line) belong to its γ-topology. The distinction between α- and γ-topology is purely
functional in nature, and the border between them can be moved dynamically per
application to accommodate the application needs. For example, if the Web Shop front-
end component requires exclusively a Windows 2003 Server OS due to the way that it
was implemented, then the whole subgraph under it can be moved to the α-topology
of the application to reflect this fact. Alternatively, all the necessary components for
the front end (PHP container, Web server and OS) can be bundled together with
the Web Shop front end component, in which case the ‘WebShop Frontend’ node in
the graph of Fig. 2 can be replaced by an equivalent ‘WebShop FrontendBundle’ (in
the α-topology) that is connected directly with the ‘Physical Server’ node with a



‘hosted on’ relation. In this manner, resource requirements as explicit constraints on
the possible topologies, as discussed in both [6] and [20], can be specified.

Finally, a set of viable topologies V for an application can be generated given the
α-topology of the application and a generic γ-topology that can even be standardized
in a domain or enterprise by merging the two graphs using the inheritance relationship.
Using the resulting µ-topology, a set of viable topologies can then be inferred from
the µ-topology by applying different morphisms m(i) : TGI → T (i), i ≥ 1 to it,
resulting in different topologies T (i) ∈ V. We assume without loss of generality that
there always exists a viable topology for an application, i.e. |V| ≥ 1. In the following
sections we only consider viable topologies in the discussion, unless explicitly stated
otherwise.

4 µ-Topologies and Distribution Optimization

The introduction of µ-topologies provides us the tools to deal with the first of the
challenges identified in Section 2, i.e. inferring the existence of possible (viable)
topologies for an application. The richer in terms of available types the γ-topology
used is, the bigger the size of the viable topologies set V for the application. In
the following we build on the introduced formalisms in order to address the second
identified challenge, i.e. optimal w.r.t. a given set of dimensions selection among
these possible topologies for a given set of parameters, in a formal manner.

For this purpose, we first introduce (a set of) utility functions as the means
to quantitatively evaluate a topology along one or more dimensions, and then we
formulate the optimal topology selection problem in order to identify the steps
involved in solving it.

4.1 Optimization Utility Function

Let’s assume a set of functions F on the domain of real numbers R of the form
F = {f(a1, . . . , an) |n ≥ 1, f : R∗ → R}, and a mapping function fmap from each
topology in the set of all viable topologies for all applications V to this set fmap :

V→ F. We then denote by u(i) ∈ F the function u(i)(a1, . . . , an) = fmap(T
(i)) and

by A(i) the set of arguments {a1, . . . , an} of u(i); as a shorthand for u(i)(a1, . . . , an)
we equivalently use u(T (i)) in the rest of this document. Providing concrete val-
ues P (i) = (p1, . . . , pn) for the arguments A(i) allows for the evaluation of the
function, i.e. eval(u(T (i)), (p1, . . . , pn)) = u(i)(p1, . . . , pn). Function u(i) is essen-
tially the utility function for the topology T (i), in the sense that it evaluates the
dimension on which the optimization takes place by providing a mapping from
the set V to R as shown in Fig. 3, where r(i) = eval(fmap(T

(i)), (p1, . . . , pn)) =

eval(u(i)(a1, . . . , an), (p1, . . . , pn)), r(i) ∈ R. For purposes of simplifying the discus-
sion we assume that functions u(i) are by definition monotonic.

Different utility functions can be defined for the same topology depending on
which dimension is taken under consideration. Furthermore, the concrete definition
of each utility function depends on the types of the nodes in the µ-topology of the
application. For example, for the initial topology T (1) of the Web Shop application in
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Fig. 1 the operational expenses of the application are decomposed into the expenses
opexzSeries of operating the IBM zSeries server hosting the Web Shop front end for
a time period of τ months, and into the cost opexEC2 m1.large of using the AWS
‘EC2 m1.large’ offering for the same time period. For the former, opexzSeries can be
calculated using a method like the one discussed by Walker in [23] as the product of
the electricity cost, power consumption for operation and cooling, server utilization
and number of hours of operation. Assuming that utilization z is stable over time we
can simplify the formula as:

opexzSeries(hτ , z) = ke × hτ × z (1)

where ke is the cost of electricity per hour of operation and hτ the total hours of
operation in τ . For the latter, as discussed in [2], the cost calculation function can
be inferred by the (publicly available) pricing policies in each cloud provider’s Web
site. In particular for the ‘EC2 m1.large’ Reserved Instances offering in the European
Region using Linux, operational expenses (in US dollars) can be written analytically
as opexEC2 m1.large(hτ ) = kinitial + hτ × kperHour, or in prices of December 2013 7:

opexEC2 m1.large(hτ ) =

{
243 + hτ × 0.17 with 1-year contract

384 + hτ × 0.134 with 3-year contract
(2)

where hτ , as in the case of opexzSeries, is the total amount of hours that the offering
has been used in period τ , and kinitial, kperHour the initial cost for the reservation of
instances and the cost of the offering per hour of use, respectively.

Assuming that the application owner has a fixed budget kmax that is allowed to
spend on operational expenses, it follows from Equations 1 and 2 that

u(T (1)) = u(1)(kmax, hτ , z) = kmax − (opexzSeries(hτ , z) + opexEC2 m1.large(hτ ))

and A(1) = {kmax, hτ , z}.
The utility function u(i) and arguments set A(i) for each topology in V can be

defined in a similar fashion. In principle, if utility (and therefore optimization of the
distribution) considers more than one dimensions, e.g. cost and deployment time,
then it can be written as a weighted and normalized sum of functions. However for
the purposes of this work, we restrict the discussion to single-dimension optimization
and leave the multiple dimension problem for future work.

7 As defined in http://aws.amazon.com/ec2/pricing/#reserved.



4.2 Optimal Topology Selection

Following from the above, optimizing the distribution of an application for a given
set of parameters (values) P, which constitutes the application profile, can therefore
be viewed as the (partial) ordering of the set V of the viable topologies for the
application based on the evaluation of their utility functions for (potentially a subset
of) P.

More specifically, starting from the partial ordering

eval(u(T (1)),P) ≷ eval(u(T (2)),P) ≷ . . . ≷ eval(u(T (m)),P),m = |V|

and given the assumption that the utility functions u(i) are monotonic in nature,
then ordering the evaluation of these functions allows for the ordering of the viable
topologies, e.g. and without loss of generality:

eval(u(T (1)),P) ≤ . . . ≤ eval(u(T (m)),P)⇒ T (1) ≤ . . . ≤ T (m). (3)

Given therefore an application profile P and by identifying the appropriate utility
functions in the set U ⊂ F for the set of viable topologies V , the optimal distribution
of the application can be selected by Equation 3. V can be first trimmed down to a
smaller size (which would allow for better performance given the number of evaluations
and comparisons required) by applying a set of filter functions σ(1) ◦ · · · ◦ σ(k)(T (i))
where

σ(j)(T (i)) =

{
T (i) if condition(j )=true,
∅ otherwise.

with condition(j ),1 ≤ j ≤ k written as logical formulas e.g. Apache Tomcat ∈ T (i)

to denote whether an Apache Tomcat typed node appears in T (i).
In terms of automating this process, optimally distributing an application across

cloud offerings with respect to one or more dimensions (e.g. operational expenses)
and for a set of predefined constraints C (e.g. the data layer of the application must
remain on premises) can be decomposed into the following steps:

1. If no µ-topology is available, then construct and merge the α-topology of the
application with an available γ-topology.

2. Generate the set of viable topologies V from the µ-topology by traversing the
typed graph with inheritance.

3. Prune down V by iteratively applying the filter functions sigma(j) for each j ∈ C.
4. For each viable topology T (i) remaining in V, identify the utility function u(i)

that is relevant for the optimization dimension.

5. Construct the set of parameter values P =
⋃|V|
i P (i), ∀u(i) ∈ U .

6. Calculate r(i) = eval(u(T (i)),P), ∀T (i) ∈ V (or equivalently ∀u(i) ∈ U).
7. Select the topology corresponding to the value max{r(i) | 1 ≤ i ≤ |V|}.

In the following section we demonstrate how these steps can be applied in
practice for the Web Shop application presented in Section 2 in order to optimize
the distribution of the application in terms of operational expenses and with a set of
architectural constraints.



5 Evaluation

The evaluation of our methodology presented in this work is based on the Web Shop
application described in Section 2. More specifically, as discussed in the previous
sections, Fig. 2 outlines some of the alternative viable topologies for the application,
such as hosting the database on AWS RDS instead of a virtual machine, and so on.
In the following we show how the proposed method can be used to optimize the
distribution of the application w.r.t. operational expenses. For evaluation purposes
we came up with a synthetic application profile P for the Web Shop application to
be used in the fifth step of the optimization process discussed in the previous section.
This profile, shown in Table 1, ensures that alternative viable topologies hosted on
different Cloud providers are comparable. Furthermore, for reasons of completeness
we also considered similar offerings to AWS EC2 and RDS provided by Windows
Azure and Rackspace that we do not show explicitly in Fig. 2 but nevertheless include
in the following discussion.

In terms of the proposed method, Fig. 2 already illustrates a µ-topology for the
application containing offerings from only one cloud provider (AWS). Traversing
the graph in the figure and generating viable topologies follows from the use of
inheritance clan relation in the choice of e.g. Linux instead of Windows for the back
end of the application. In order to limit the search space we define the constraint
set C = {cfront, cprovider} where cfront = IBM zSeries ∈ T (i) ∧ ∃path ∈ T (i) :

WebShop FrontEnd
∗−→ IBM zSeries, i.e. the application front end must be de-

ployed on an IBM zSeries server, and cprovider = (AWS EC2 ∈ T (i) ∨AWS RDS ∈
T (i))⊕ (Azure VM ∈ T (i) ∨Azure SQL ∈ T (i))⊕ . . ., i.e. cloud offerings only from
one provider at a time are allowed to avoid latency between providers. The remaining
viable topologies in V after applying the filter functions σfront ◦ σprovider for the
offerings of the three cloud providers (AWS, Azure and Rackspace) are depicted in
Table 2. For example, T (1) is the initial topology, T (2) is its variation that uses two
smaller Amazon EC2 m1.medium instances, both with a different operating system,
for a separate deployment of the Web Shop’s back end and persistence tiers, etc.

The equivalent provider offerings that can be used, and the monetary cost
projected for each T (i) for the application profile P is calculated by utilizing the
Nefolog system [24]. For a given application usage profile and time interval, Nefolog

Table 1. Web Shop Application Profile Parameters

Parameter Value

hτ Hours of Usage 5,040

τ Months of Usage 15

nI/O Number of I/O Ops 5,000

dstorage Storage in GB 5,000

degress Outgoing Traffic in GB 50,000

loc Infrastructure Location Europe



Table 2. Cost Analysis for a Subset of the Viable Topologies of the Web Shop Application

Topology Provider Cloud Offerings Used Total Cost

T (1) AWS Backend: EC2 m1.large (Windows) $77,037

ProductDB: in the same VM

T (2) AWS Backend: EC2 m1.medium (Windows) $75,942

ProductDB: EC2 m1.medium (Linux)

T (3) AWS Backend: EC2 m1.medium (Windows) $84,904

ProductDB: RDS db.m1.medium (MySQL)

T (4) Azure Backend: VM Large A3 (Windows) $75,504

ProductDB: in the same VM

T (5) Azure Backend: VM Medium A2 (Windows) $84,504

ProductDB: VM Medium A2 (Linux)

T (6) Azure Backend: VM Medium A2 (Windows) $86,139

ProductDB: SQL ProductDB (Microsoft SQL)

T (7) Rackspace Backend: Cloud Server 8GB (Windows) $96,351

ProductDB: in the same VM

T (8) Rackspace Backend:Cloud Server 4GB (Linux) $105,432

ProductDB: Cloud Server 4GB (Linux)

T (9) Rackspace Backend: Cloud Server 4GB (Windows) $154,134

ProductDB: Cloud Database 4GB (MySQL)

provides cloud offerings matching and cost estimation capabilities as RESTful services.
For the given application profile and viable topologies, we first used the Offerings
Matcher service to identify a set of offerings from the two additional to AWS providers
(Windows Azure and Rackspace) that are equivalent to the AWS offerings used in
Fig. 1. We then invoked the Cost Calculator service for each of the identified offerings,
and the results of the service invocation was stored in an N ×M matrix, where N
is the Cost Calculator operation query parameters (using the application profile in
Table 1) and M the projected cost of each Cloud offering for each T (i) topology.
The total cost of operational expenses opex(i) for each T (i) with application profile
parameters from Table 1 is shown in Table 2.

By denoting with opexmax the maximum calculated cost ($154,134 for a Windows
server and database solution in Rackspace for 15 months of use), choosing for utility
function

u(i)(hτ , τ, nI/O, dstorage, degress, loc) = opexmax − opex(i)(hτ , τ, . . .)



(so that the utility function is monotonically decreasing with the cost) and by using
the application profile in Table 1 it can be seen that:

r(9) < r(8) < r(7) < r(6) < r(3) < r(5) < r(1) < r(2) < r(4) ⇒
T (9) < T (8) < T (7) < T (6) < T (3) < T (5) < T (1) < T (2) < T (4)

From this it can therefore be concluded that for the given application profile, the
optimal w.r.t. operational expenses distribution of the Web Shop application is repre-
sented by the viable topology T (4), i.e. using a single Windows Azure VM to host
both the back end and persistence tier of the application. Looking only at topologies
that are deployed on AWS offerings, it can also be seen that it is cheaper to distribute
the application back end and persistence tier across two smaller VMs instead of a
larger one. It is obvious from the above that elasticity is not considered in these
results. Adding to the application profile the use of multiple VMs to cope with
variation in demand would potentially result in a different ordering of the topologies.
However, adding this capability to the presented framework is at this point in time
future work.

6 Related Work

As discussed in the introductory section, decision support-oriented approaches like
Kingfisher [21], CloudGenius [16], CloudAdoption [10] and MDSS [2] focus on assisting
application designers in migrating their applications to the cloud. The main focus
of these works is on optimal cloud offering selection for a given application that is
essentially treated as a monolithic artifact. These approaches are therefore limited in
their usefulness in light of multiple potential application topologies considering the
distribution of the application across offerings.

The Cloud Blueprinting approach [19, 20] defines a blueprint as an abstract de-
scription of cloud service offerings that facilitates the selection, customization and
composition of cloud services into service-based applications. Blueprint templates
allow the application developers to define the requirements of the application in
terms of functional capabilities, QoS characteristics, and deployment and provision-
ing resources as target blueprints. In this respect, target blueprints are equivalent
to α-topologies. However, the blueprinting approach is geared towards matching
requirements with available solutions in a repository, having no equivalent concept
to γ-topology, and lacking therefore the ability to generate viable topologies for an
application.

The proposed approach shares a similarity with other existing works, in the
sense that they use application topologies to optimize for a set of dimensions usually
involving operational expenses. For example, the work in [18] presents DADL, a
language to describe the architecture, behavior and needs of a distributed application
to be deployed on the cloud, as well as describing available cloud offerings for
matching purposes. Similarly, in [3], the authors propose an approach that matches
and dynamically adapts the allocation of infrastructure resources to an application
topology in order to ensure SLAs. CloudMig [8] is another approach that builds on
an initial topology of the application that is adapted through model transformation



in order to optimize the distribution of the application across cloud offerings. The
optimization in this case also focuses on SLA compliance in a trade-off relation to
operational expenses. The approach in [17] uses a Palladio-based application topology
model in order to distribute an application across different cloud providers aiming at
optimizing for availability and operational expenses.

Nevertheless, all of the above approaches assume that the application topology
is already known (and fixed), and are restricted to VM-based IaaS solutions. Our
approach takes into account also non-VM cloud offerings like DBaaS offerings, and
allows for the dynamic generation of acceptable application topologies, which may also
include alternative application stacks based on the richness of the γ-topology of the
application. This observation also applies to the most relevant for our proposal work,
the MOCCA framework [13] which also discusses the optimization of the application
to cloud offerings based on introducing variability points in the application topology.

In terms of non-cloud scenarios, optimization of the application distribution has
been discussed as part of various approaches like [11, 14] and [15]. These approaches
focus on performance engineering that is not discussed in the scope of this work,
and in this sense they can be useful in extending the current work. However, it is
necessary to evaluate first to which extend their underlying application topology
models can be leveraged for cloud applications.

7 Conclusions

The previous sections motivated the need for moving away from the practice of
thinking of applications as monolithic stacks to be deployed in one VM, either in the
cloud or in in-house servers. Multi-tiered applications in particular can be seen as
an aggregation of application-specific components, middleware solutions supporting
these components, and of the underlying infrastructure in which they are being
deployed and provisioned. The availability of cloud offerings beyond the VM-oriented
IaaS solutions, and the proliferation of cloud services competing for market share
create both opportunities and challenges for application engineers. Optimizing the
distribution of an application across potentially multiple cloud offerings is therefore
an important requirement for reaping the benefits of the cloud computing paradigm.

Toward this goal, in this work we proposed a theoretical framework that supports
decision making in identifying the optimal application distribution. For this purpose
we approached application topology models as typed graphs and leveraged existing
work on introducing inheritance relationships between nodes in them. Using the
concept of type graph with inheritance we introduced the concept of µ-topologies
as an abstraction over two distincts parts of an application topology: α-topology,
the application specific aspect of the model, and γ-topology, being reusable across
different applications. We then showed how µ-topologies can be used to generate
viable topologies as alternative deployment scenarios for the application, taking into
account different types of cloud offerings. Based on this foundation we then proposed
a generic definition of the optimization distribution problem as a mapping from the
application topology domain to the set of real numbers, which allows for the (partial)
ordering of alternative solutions and therefore simplifies the optimization.



One clear deficiency of the proposed approach is the ability to scale with the
number of nodes in the µ-topology. Rich γ-topologies are of course necessary in order
to be able to generate as many alternative solutions as possible, but the richer the
γ-topology used is, the larger the space that needs to be searched through. Realizing
the topology generation and selection algorithm discussed in Section 4.2, evaluating
its complexity for real-world examples and dealing with potential scalability problems
is in our immediate future plans.

For purposes of illustrative examples and evaluation throughout this work the
focus was on operational expenses, and showing how the most cost-efficient application
topology can be identified. Beyond offering the opportunity for concrete examples
and easily verifiable results with publicly available information, this choice was also
based on what is perceived to have driven the growth of cloud computing, i.e. cost
reduction due to economies of scale on the provider side. However, the presented
framework is not limited to optimization for operational expenses. As discussed in the
previous section, there are a number of available performance engineering approaches
that can be used to extend this work, e.g. [11, 14, 15]. To this goal, investigating
the role of the workload of the application as reflected in its distribution across
(topological) nodes is of interest for future work, as well as the effect of network
latency between cloud offerings of the same and different providers (see also the
discussion in [1] building on [9]). Finally, evaluating the impact of different scalability
strategies, expanding on works like [21, 22], is as mentioned in Section 5 an example
of an additional optimization dimension to be introduced in future work.
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